
Failure, Recovery and Concurrency

Control

UNIT – V
Database Management System

Reference: Database Systems by Elmasri Navathe, Pearson Publicatoins

Database Concepts, Korth, Silbertz, Sudarshan

Transaction Processing

3

Transaction Processing Concepts

⚫ A transaction is a unit of program execution that accesses

and possibly updates various data items.

⚫ A transaction must see a consistent database.

⚫ During transaction execution, the database may be

temporarily inconsistent.

⚫ When the transaction completes successfully (is committed),

the database must be consistent.

⚫ After a transaction commits, the changes it has made to the

database persist, even if there are system failures.

⚫ Multiple transactions can execute in parallel.

⚫ Two main issues to deal with:

– Failures of various kinds, such as hardware failures and system

crashes

– Concurrent execution of multiple transactions

4

Desirable Properties of transaction (ACID)

⚫ Atomicity: Either all operations of the transaction are
properly reflected in the database or none are.

⚫ Consistency: Execution of a transaction in isolation
preserves the consistency of the database.

⚫ Isolation: Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate
transaction results must be hidden from other concurrently
executed transactions. That is, for every pair of
transactions Ti and Tj, it appears to Ti that either Tj,
finished execution before Ti started, or Tj started
execution after Ti finished.

⚫ Durability: After a transaction completes successfully,
the changes it has made to the database persist, even if
there are system failures.

5

Example
Transaction to transfer Rs. 5000 from account A to account
B:

1. read(A)

2. A := A – 5000

3. write(A)

4. read(B)

5. B := B + 5000

6. write(B)

⚫ Atomicity requirement - if the transaction fails after step 3
And before step 6, the system should ensure that its updates
are not reflected in the database, else an inconsistency will
result.

⚫ Consistency requirement – the sum of A and B is
unchanged by the execution of the transaction.

6

⚫ Isolation requirement - if between steps 3 and 6, another

transaction is allowed to access partially updated database,

it will see an inconsistent database.

– Isolation can be ensured trivially by running transactions serially,

that is one after the other.

– However, executing multiple transactions concurrently has significant

benefits.

⚫ Durability requirement - once the user has been notified

that the transaction has completed (i.e., the transfer of the

Rs. 5000 has taken place), the updates to the database by

the transaction must persist despite failures.

Contd….

7

Transaction States
⚫ Active – the initial state; the transaction stays in this state while it is

executing

⚫ Partially committed – after the final statement has been executed.

⚫ Failed -- after the discovery that normal execution can no longer

proceed.

⚫ Aborted – after the transaction has been rolled back and the database

restored to its state prior to the start of the transaction.

Two options after it has been aborted:

– restart the transaction; can be done only if no internal logical error

– kill the transaction

⚫ Committed – after successful completion.

8

State Diagram

END

Transaction

9

Schedule

⚫ A sequence of instructions that specify the chronological
order in which instructions of concurrent transactions are
executed
– a schedule for a set of transactions must consist of all instructions of

those transactions

– must preserve the order in which the instructions appear in each
individual transaction.

⚫ A transaction that successfully completes its execution will
have a commit instructions as the last statement.

⚫ A transaction that fails to successfully complete its execution
will have an abort instructions as the last statement .

10

Schedule
Suppose the current values of accounts A and B are $1000 and $2000,

respectively.

Suppose also that the two transactions are executed one at a time in

the order T1 followed by T2. This execution sequence appears in

Figure 1.0 In the figure, the sequence of instruction steps is in

chronological order from top to bottom, with instructions of T1

appearing in the left column and instructions of T2 appearing in the

right column.

The final values of accounts A and B, after the execution in Figure 1.0

takes place, respectively. Thus, the total amount of money in

accounts A and B—that is, the sum A + B—is preserved after the

execution of both transactions.

11

Schedule - 1

⚫ Let T1 transfer $50 from A to B, and T2 transfer 10% of

the balance from A to B.

⚫ A serial schedule in which T1 is followed by T2:

Fig:1.0

12

Schedule – 2
A serial schedule where T2 is followed by

T1

The execution sequences just described are called schedules. They

represent the chronological order in which instructions are

executed in the system.

Clearly, a schedule for a set of transactions must consist of all

instructions of those transactions, and must preserve the order

in which the instructions appear in each individual

transaction.

Schedule - 3
⚫ Let T1 and T2 be the transactions defined previously. The following

schedule is not a serial schedule, but it is equivalent to Schedule 1. In
Schedules 1, 2 and 3, the sum A + B is preserved.

Figure 1.2 Schedule 3

A concurrent schedule

equivalent to schedule 1.

Figure 1.0 Schedule 1

Returning to our previous example, suppose that the two

transactions are executed concurrently. One possible schedule

appears in Figure 1.2 After this execution takes place, we arrive at

the same state as the one in which the transactions are executed

serially in the order T1 followed by T2.

The sum A + B is indeed preserved.

16

Schedule - 4

⚫ The following concurrent schedule does not

preserve the value of (A + B).

Concurrency Control

One of the fundamental properties of a transaction is

isolation. When several transactions execute concurrently

in the database, however, the isolation property may no

longer be preserved.

To ensure that , the system must control the interaction

among the concurrent transactions; this control is achieved

through one of a variety of mechanisms called

concurrency-control schemes.

The concurrency-control schemes, are all based on the

serializability property. That is, all the schemes presented

here ensure that schedules are serializable.

18

Why Concurrency Control is needed:

⚫ The Lost Update Problem

– This occurs when two transactions that access the same
database items have their operations interleaved in a way
that makes the value of some database item incorrect.

⚫ The Temporary Update (or Dirty Read) Problem

– This occurs when one transaction updates a database item
and then the transaction fails for some reason.

– The updated item is accessed by another transaction before it
is changed back to its original value.

⚫ The Incorrect Summary Problem

– If one transaction is calculating an aggregate summary
function on a number of records while other transactions are
updating some of these records, the aggregate function may
calculate some values before they are updated and others
after they are updated.

19

T1 T2

Read_item(X);

X:=X-N

Write_item(X);

Read_item(Y);

Y:=Y+N;

Write_item(Y);

Read_item(X);

X:=X+M;

Write_item(X);

Fig(a): The lost update problem:

Item X has an incorrect value

because its update by T1 is lost

Time

20

T1 T2

Read_item(X);

X:=X-N

Write_item(X);

Read_item(Y);

Read_item(X);

X:=X+M;

Write_item(X);

Fig (b): The temporary

update problem: Transaction

T1 fails and must change the

value of X back to its old

value; meanwhile T2 has

read the temporary incorrect

value of X.

Time

21

T1 T3

Read_item(X);

X:=X-N

Write_item(X);

Read_item(Y);

Y:=Y+N;

Write_item(Y);

Sum:=0;

Read_item(A);

Sum:=sum+A;

:

:

:

Read_item(X);

Sum:=sum+X;

Read_item(Y);

Sum:=sum+Y;

Fig (b): A wrong Summary

problem: T3 reads X after N is

subtracted and reads Y before N

is added; a wrong summary is

the result.

Time

22

Serializability
⚫ Basic Assumption – Each transaction preserves database

consistency.

⚫ Thus serial execution of a set of transactions preserves database
consistency.

⚫ A (possibly concurrent) schedule is serializable if it is equivalent to
a serial schedule. Different forms of schedule equivalence give
rise to the notions of:

– Conflict serializability

– View serializability

⚫ We ignore operations other than read and write instructions, and
we assume that transactions may perform arbitrary computations
on data in local buffers in between reads and writes. Our
simplified schedules consist of only read and write instructions.

23

Conflicting Instructions

⚫ Instructions li and lj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both li and lj, and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

⚫ Intuitively, a conflict between li and lj forces a (logical)
temporal order between them.
– If li and lj are consecutive in a schedule and they do not conflict, their

results would remain the same even if they had been interchanged
in the schedule.

24

Conflict Serializability

⚫ If a schedule S can be transformed into a

schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and

S’ are conflict equivalent.

⚫ We say that a schedule S is conflict

serializable if it is conflict equivalent to a

serial schedule.

25

Serializability (Cont.)

⚫ Schedule 3 can be transformed into Schedule 6, a

Serial schedule where T2 follows T1, by series of

swaps of non-conflicting instructions.

26

View Serializability

⚫ Let S and S´ be two schedules with the same set of transactions. S
and S´ are view equivalent if the following three conditions are
met:

1. For each data item Q, if transaction Ti reads the initial value of
Q in schedule S, then transaction Ti must, in schedule S ´, also
read the initial value of Q.

2. For each data item Q if transaction Ti executes read(Q) in
schedule S, and that value was produced by transaction Tj (If
any), then transaction Ti must in schedule S´ also read the
value of Q that was produced by transaction Tj .

(Conditions 1 and 2 ensure that each transaction reads the same
values in both schedules, and therefore performs the same
computation)

27

View Serializability

3. For each data item Q, the transaction (if any) that performs the
final write(Q) operation in schedule S must perform the final
write(Q) operation in schedule S´.

As can be seen, view equivalence is also based purely on reads
and writes alone.

(Condition 3, coupled with conditions 1 and 2 , ensures that both
schedules result in the same final system state.

28

⚫ A schedule S is view serializable if it is view equivalent to a serial
schedule.

⚫ Every conflict serializable schedule is also view serializable.

⚫ Below is a schedule which is view-serializable but not conflict
serializable.

View Serializability

Let value of A=100 and B=100

30

Testing of Serializability

⚫ Consider some schedule of a set of transactions T1, T2, ...,

Tn

⚫ Precedence graph – a direct graph where the vertices are

the transactions (names).

⚫ We draw an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose

earlier.

• We may label the arc by the item that was accessed.

31

Testing for Serializability

When designing concurrency control schemes, we must show that

schedules generated by the scheme are serializable.

To do that, we must first understand how to determine, given a

particular schedule S, whether the schedule is serializable.

A simple and efficient method for determining conflict

serializability of a schedule.

Consider a schedule S. We construct a directed graph, called a

precedence graph, from S.

This graph consists of a pair G = (V, E), where V is a set of vertices

and E is a set of edges. The set of vertices consists of all the

transactions participating in the schedule.

32

Testing for Serializability

The set of edges consists of all edges Ti →Tj for which one of three

conditions holds:

1. Ti executes write(Q) before Tj executes read(Q).

2. Ti executes read(Q) before Tj executes write(Q).

3. Ti executes write(Q) before Tj executes write(Q).

33

T1 T2

read(A)

A := A – 50

write (A)

read(B)

B := B + 50

write(B)

read(A)

temp := A * 0.1

A := A – temp

write(A)

read(B)

B := B + temp

write(B)

Figure : Schedule 1— a serial schedule in which T1 is followed by T2.

34

T1 T2

read(A)

temp := A * 0.1

A := A –temp

write(A)

read(B)

B := B + temp

write(B)

read(A)

A := A 50

write(A)

read(B)

B := B + 50

write(B)

Figure : Schedule 2—a serial schedule in which T2 is followed by T1.

35

Figure 15.15 Precedence graph for (a) schedule 1 and (b) schedule 2.

T1 T2

T2 T1

(a)

(b)

If an edge Ti → Tj exists in the precedence graph, then, in any serial

schedule S’ equivalent to S, Ti must appear before Tj .

36

T1 T2

read(A)

A := A –50

read(A)

temp := A * 0.1

A := A+temp

write(A)

read(B)

write(A)

read(B)

B := B + 50

write(B)

B := B + temp

write(B)

Figure : Schedule 4 -a concurrent schedule.

37

Figure 15.16 Precedence graph for schedule 4.

38

Why a Transaction fails

1. A computer failure (system crash):

A hardware or software error occurs in the computer
system during transaction execution. If the hardware
crashes, the contents of the computer’s internal memory
may be lost.

2. A transaction or system error:

Some operation in the transaction may cause it to fail,
such as integer overflow or division by zero. Transaction
failure may also occur because of erroneous parameter
values or because of a logical programming error. In
addition, the user may interrupt the transaction during its
execution.

39

Why a Transaction fails contd..

3. Local errors or exception conditions detected by
the transaction:

Certain conditions necessitate cancellation of the transaction. For
example, data for the transaction may not be found. A condition,
such as insufficient account balance in a banking database, may
cause a transaction, such as a fund withdrawal from that account,
to be canceled. A programmed abort in the transaction causes it to
fail.

4. Concurrency control enforcement:
The concurrency control method may decide to abort the
transaction, to be restarted later, because it violates serializability
or because several transactions are in a state of deadlock.

40

5. Disk failure:
Some disk blocks may lose their data because of a read or
write malfunction or because of a disk read/write head crash.
This may happen during a read or a write operation of the
transaction.

6. Physical problems and catastrophes:
This refers to an endless list of problems that includes power
or air-conditioning failure, fire, theft, overwriting disks or
tapes by mistake, and mounting of a wrong tape by the
operator etc.

41

Recovery from a Transaction failure

If a transaction Ti fails, for whatever reason, we need to

undo the effect of this transaction to ensure the automacity

property of the transaction.

In the system that allows concurrent execution , it is

necessary also to ensure that any transaction Tj that is

dependent on Ti is also aborted.

To achieve this surety, we need to place restrictions on the

type of schedules permitted in the system.

42

Recoverable Schedules

Consider the schedule in the fig 2.0, in which T9 is a transaction that

performs only one instruction : read(A)

Suppose that the system allows T9 to commit immediately after

executing the read(A) instruction . Thus, T9, commits before T8

does.

Now suppose that T8 fails before it commits. Since T9 has read

the value of data item A written by T8, we must abort T9 to

ensure transaction atomicity.

However T9 has already committed and cannot be aborted. This

situation is called Unrecoverable schedules.

T8 T9
Read(A)

Write(A)

read(A)

Read(B)
Fig:2.0

43

Recoverable Schedules

Schedule shown in the below Figure 2.0 with the commit happening

immediately after the read(A) instruction, is an example of a

nonrecoverable schedule, which should not be allowed.

Most database systems require that all schedules be recoverable.

A recoverable schedule is one where, for each pair of transaction Ti

and Tj such that Tj reads a data item previously written by Ti, the

commit operation of Ti appears before the commit operation of Tj.

Ti Tj
Read(A)

Write(A)

read(A)

Read(B)

Fig:2.1

Cascade Schedules

T10 T11 T12

Read(A)

Read(B)

Write(A)

read(A)

write(A)

read(A)

Suppose that, T10 fails , T10 must be rolled back. Since T11 is

dependent on T10, T11 must be rolled back. Since T12 is dependent

on T11, T12 must be rolled back. This phenomenon, in which a

single transaction failure leads to a series of transaction rollbacks, is

called cascading rollback.

Cascadeless Schedules

Cascading rollback is undesirable, since it leads to the un doing of a

significant amount of work. It is desirable to restrict the schedules to

those where cascading rollbacks cannot occur. Such schedules are

called cascadless schedules.

Formally, a cascadless schedule is one where, for each pair of

transactions Ti and Tj such that Tj reads a data item previously

written by Ti, the commit operation of Ti appears before the read

operation of Tj.

It is easy to verify that every cascadless schedule is also recoverable.

46

Recovery from a Transaction failure

⚫ Recovery manager keeps track of the following
operations:
– begin_transaction: This marks the beginning of transaction

execution.

– read or write: These specify read or write operations on the database
items that are executed as part of a transaction.

– end_transaction: This specifies that read and write transaction
operations have ended and marks the end limit of transaction
execution.

⚫ At this point it may be necessary to check whether the changes
introduced by the transaction can be permanently applied to the
database or whether the transaction has to be aborted because it
violates concurrency control or for some other reason.

47

Contd…
⚫ Recovery manager keeps track of the following operations

(cont):

– commit_transaction: This signals a successful end of the
transaction so that any changes (updates) executed by the
transaction can be safely committed to the database and will not
be undone.

– rollback (or abort): This signals that the transaction has ended
unsuccessfully, so that any changes or effects that the transaction
may have applied to the database must be undone.

⚫ Recovery techniques use the following operators:

– undo: Similar to rollback except that it applies to a single
operation rather than to a whole transaction.

– redo: This specifies that certain transaction operations must be
redone to ensure that all the operations of a committed
transaction have been applied successfully to the database.

48

State transition diagram illustrating the

states for transaction execution

49

Log-Based Recovery

⚫The System Log

– Log or Journal: The log keeps track of all
transaction operations that affect the values of
database items.

⚫ This information may be needed to permit recovery
from transaction failures.

⚫ The log is kept on disk, so it is not affected by any
type of failure except for disk or catastrophic
failure.

⚫ In addition, the log is periodically backed up to
archival storage (tape) to guard against such
catastrophic failures.

50

Contd…
⚫ The System Log (cont):

– T in the following discussion refers to a unique transaction-
id that is generated automatically by the system and is used
to identify each transaction:

– Types of log record:

⚫ [start_transaction,T]: Records that transaction T has
started execution.

⚫ [write_item,T,X,old_value,new_value]: Records that
transaction T has changed the value of database item X
from old_value to new_value.

⚫ [read_item,T,X]: Records that transaction T has read the
value of database item X.

⚫ [commit,T]: Records that transaction T has completed
successfully, and affirms that its effect can be committed
(recorded permanently) to the database.

⚫ [abort,T]: Records that transaction T has been aborted.

51

Contd….

⚫ The System Log (cont):

– Protocols for recovery that avoid cascading rollbacks

do not require that read operations be written to the

system log, whereas other protocols require these

entries for recovery.

52

Log-Based Recovery

⚫ If the system crashes, we can recover to a
consistent database state by examining the log.
1. Because the log contains a record of every write operation

that changes the value of some database item, it is possible
to undo the effect of these write operations of a transaction
T by tracing backward through the log and resetting all
items changed by a write operation of T to their old_values.

2. We can also redo the effect of the write operations of a
transaction T by tracing forward through the log and setting
all items changed by a write operation of T (that did not get
done permanently) to their new_values.

Precedence Graph

A serializiblity order of the transactions can be obtained through

topological sorting, which determines a linear order consistent with

the partial order of the precedence graph.

T1 T2

T2 T1

Fig: Precedence Graph

Precedence Graph for the Schedule S1

T1 T2

Fig: Schedule S1

Thus to test for conflict

serializiblity , we need to

construct the precedence

graph and

Checkpoints

A Checkpoint is like a snapshot of the DBMS state. By taking

checkpoints, the DBMS can reduce the amount of work to be done

during restart in the event of subsequent crashes.

When a system failure occurs, we must consult the log to determine

those transactions that need to be redone and those that need to be

undone.

In principle, we need to search the entire log to determine this

information.

There are two major difficulties with this approach:

1. The search process is time consuming.

2. Most of the transactions that, according to the algorithm, need

to be redone have already written their updates into the database.

Although redoing them will cause no harm, it will nevertheless cause

recovery to take longer.

Checkpoints contd..

Keeping and maintaining logs in real time and in real

environment may fill out all the memory space available in

the system.

At time passes log file may be too big to be handled at all.

Checkpoint is a mechanism where all the previous logs

are removed from the system and stored permanently in

storage disk.

Checkpoint declares a point before which the DBMS was in

consistent state and all the transactions were committed.

To reduce these types of overhead, checkpoints are used. The system

periodically performs checkpoints, which require the following

sequence of actions to take place:

1. Output onto stable storage all log records currently residing in

main memory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record <checkpoint>.

Transactions are not allowed to perform any update actions, such as

writing to a buffer block or writing a log record, while a checkpoint is

in progress.

The presence of a <checkpoint> record in the log allows the system to

streamline its recovery procedure.

Techniques of Checkpoints

Deferred Database Modification: The deferred-modification

technique ensures transaction atomicity by recording all database

modifications in the log, but deferring (delaying) the execution of all

write operations of a transaction until the transaction partially

commits.

✓A transaction is said to be partially committed once the final action

of the transaction has been executed. The deferred-modification

technique assumes that transactions are executed serially.

✓When a transaction partially commits, the information on the log

associated with the transaction is used in executing the deferred

writes.

✓If the system crashes before the transaction completes its execution,

or if the transaction aborts, then the information on the log is simply

ignored.

59

Immediate Database Modification

The immediate-modification technique allows database

modifications to be output to the database while the transaction is

still in the active state.

Data modifications written by active transactions are called

uncommitted modifications. In the event of a crash or a transaction

failure, the system must use the old-value field of the log records to

restore the modified data items to the value they had prior to the start

of the transaction.

60

Immediate Database Modification contd….

The undo operation accomplishes this restoration.

Before a transaction Ti starts its execution, the system writes the

record <Ti start> to the log.

During its execution, any write(X) operation by Ti is preceded by the

writing of the appropriate new update record to the log.

When Ti partially commits, the system writes the record <Ti commit>

to the log.

61

Immediate Database Modification contd….

Since the information in the log is used in reconstructing the state of

the database, we cannot allow the actual update to the database to

take place before the corresponding log record is written out to stable

storage.

We therefore require that, before execution of an output(B) operation,

the log records corresponding to B be written onto stable storage.

Transactions, Read and Write Operations, and

DBMS Buffers
A single application program may contain more than one

transaction if it contains several transaction boundaries. If the

database operations in a transaction do not update the database but

only retrieve data, the transaction is called a read-only

transaction.

The model of a database that is used to explain transaction

processing concepts is much simplified. A database is basically

represented as a collection of named data items. The size of a

data item is called its granularity, and it can be a field of some

record in the database, or it may be a larger unit such as a record or

even a whole disk block.

Transactions, Read and Write Operations, and

DBMS Buffers
The basic database access operations that a transaction can include

are as follows:

• read_item(X): Reads a database item named X into a program

variable. To simplify our notation, we assume that the program

variable is also named X.

• write_item(X): Writes the value of program variable X into the

database item named X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory

3. Copy item X from the buffer to the program variable named X.

Transactions, Read and Write Operations, and

DBMS Buffers

Executing a write_item(X) command includes the following

steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory

3. Copy item X from the program variable named X into its correct

location in the buffer.

4. Store the updated block from the buffer back to disk.

Why Concurrency Control is Needed?

To over come some of the following problems:

➢The Lost Update Problem

➢The Temporary Update (or Dirty Read) Problem

➢The Incorrect Summary Problem.

Several problems can occur when concurrent transactions execute

in an uncontrolled manner.

We illustrate some of these problems by referring to a much

simplified airline reservations database in which a record is

stored for each airline flight.

Concurrency Control Techniques

Concurrency Control techniques are used to ensure the non-interference

or isolation property of concurrency executing transactions.

Most of these techniques ensure serializability of schedules, using

protocols that guarantee serializablity .

One important set of protocols employs the technique of locking data

items to prevent multiple transactions from accessing the items

concurrently .

Another set of concurrency control protocols use timestamps. A time

stamp is a unique identifier for each transaction, generated by the

system.

Another factor that affects concurrency control is the granularity of

the data items-that is, what portion of the database a data item

represents. An item can be as small as a single attribute value or as

large as a disk block, or even a whole file or the entire database.

Concurrency Control Techniques

Locking : Whenever a transaction is being accessed by a transaction ,

it must not be modified by any other transactions. In order to ensure

this, a transaction needs a lock on the required data item.

A Lock is a variable associated with each data item that indicates

whether a read or write operation can be applied to the data item.

In addition ,it synchronizes the concurrent access of data items.

Database system mainly use two modes of locking:

✓ Exclusive Lock

✓ Shared Locks

Concurrency Control Techniques

Database system mainly use two modes of locking:

Exclusive Lock

It is denoted by (X) is the commonly used locking strategy that

provides a transaction an exclusive control on the data item. A

transaction that wants to read as well as write a data item must acquire

exclusive lock on the data item. It is also known as update lock.

Shared Lock

It is denoted by (S) can be acquired on a data item when a transaction

wants to only read a data item and do not modify it. It is also known

as read lock.

Concurrency Control Techniques

Exclusive Lock-Example

If a transaction Ti has acquired an Exclusive lock on a data item, say

Q, then Ti can both read and write Q.

If another transaction say Tj, requests to access Q, then Tj has to wait

for Ti to release its lock on Q.

It means no transaction is allowed to access data item when it is

exclusive locked by another transaction. Lock prevents concurrent

transactions from corrupting one another.

Shared Lock -Example

If a transaction Ti has acquired a shared lock on data item Q, then Ti

can read but cannot write on Q. More over any number of transactions

can acquire shared lock on the same data item simultaneously without

any risk of interference between tracsactions.

IMPLEMENTATION OF LOCK

A lock manager can be implemented as a process that receives

messages from transactions and sends messages in reply. The lock-

manager process replies to lock-request messages with lock-grant

messages, or with messages requesting rollback of the transaction (in

case of deadlocks).

Unlock messages require only an acknowledgment in response, but

may result in a grant message to another waiting transaction. The lock

manager uses this data structure:

For each data item that is currently locked, it maintains a linked list of

records, one for each request, in the order in which the requests

arrived. It uses a hash table, indexed on the name of a data item, to

find the linked list (if any) for a data item; this table is called the lock

table.

V1

V2

:

:

:

:

:

Vn

Q1

S

Q2

Q3

X
Ti Tj

S
Tj

S
Tj

S
Ti

Hash value pointer

Fig: 5.1 Lock Table

Lock granted

Waiting requests

T3 T4

Lock-X(R)

………….

lock-S(Q)

…………

lock-S(R)

Lock-X(Q)

Fig5.2: Deadlock Situation

Note: Deadlock is a situation that occurs when all the transactions in a set

of two or more are in a simultaneous wait state and each of them is

waiting for the release of a data item held by one of the other waiting

transaction in a set. None of the transaction can proceed until at least one

of the waiting transaction releases lock on the data item.

Two-Phase Locking

It requires that each transaction be divided into two phases.

During First Phase, the transaction acquires all the locks;

During Second Phase, the transaction releases all the locks .

The phase during which locks are acquired is growing or expanding

phase. In this phase, the number of locks held by a transaction

increases from zero to maximum.

On the other hand, a phase during which locks are released is

shrinking or contracting phase. In this phase, the number of locks

held by a transaction decreases from maximum to zero.

Whenever a transaction releases a lock on a data item, it enters

into the shrinking phase.

Two-Phase Locking contd….

Until all the required locks on the data items are acquired, the release

of the locks must be delayed.

Thus, the two-phase locking leads to lower degree of concurrency

among transactions.

The point in the schedule at which the transaction successfully

acquires its last lock is called the lock point of the transaction.

Fig.5.3: Transactions T1 and T2 in Two-Phase Locking.

T1 T2

Lock-X(R)

Read(R)

R:=R-200;

Write(R)

Lock-X(Q)

Read(Q)

Q:=Q+200;

Write(Q)

Unlock(R)

Unlock(Q) lock-X(sum)

sum:=0;

lock-S(Q)

read(Q)

sum:=sum+Q;

lock-S(R)

read(R)

write(sum)

unlock(Q)

unlock(R)

unlock(sum)

DB

F1 F2 F3

R1
1

R1
n

R2
1

R2
M

R3
1

R3
K

…….

.

…….

.

…….

.

Fig.5.6: Multiple-granularity Tree

Database

Files

Records

Multiple Granularity Locking

Locking granularity is the size of the data item that the lock

protects. It is important for the performance of a database

system.

Two terms used in Granularity are :

Coarse granularity

Fine Granularity

If the large data item is locked, it is easier for the lock manager

to manage the lock.

A transaction requires lock granularity on the basis of the

operation being performed.

Since different transactions have dissimilar requests, it is

desirable that the database system provides a range of locking

granules called multiple-granularity locking

